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Modified Generalized-a Method for Integrating
Governing Equations of Very Flexible Aircraft

Christopher M. Shearer * and Carlos E. S. Cesnik t
The University of Michigan, Ann Arbor, Michigan, 48109, USA

I. Abstract

This paper focuses on the time integration of the nonlinear EOM associated with a very flexible aircraft
in flight. Various integration methods exist for linear structural dynamics problems. However, a review
of the literature indicates little material associated with the integration of nonlinear structural EOM of
relatively large order. Moreover, for the problem of simulation of very flexible aircraft, a combination of
flight dynamics and aeroelastic degrees of freedom must be integrated concurrently. A modified first and
second order Generalized-a Method along with an implicit sub-iteration scheme were developed. It has
shown good agreement with predictor/corrector integration schemes for a reduced set of linear EOM. The
method is also seen to be numerically stable when compared to non-dissipative time marching integration
schemes and requires less computational time compared to predictor/corrector methods for the full set of
nonlinear EOM.

II. Introduction

Recent advances in airborne sensors and communication packages have brought the need for high-altitude
long-endurance (HALE) aircraft. These platforms can be categorized under three broad missions supporting
either the military or civilian community. The missions include airborne Intelligence, Surveillance, and Re-
connaissance (ISR) for the military, 1 network communication nodes for the military and civilian community, 2

and general atmospheric research.2 Due to the mission requirements, the desired vehicles are characterized
by high aspect ratio wings and slender fuselages. Example of mission optimization studies for this class of
vehicle can be found in Ref. 1 where the authors show that the HALE aircraft are required to have a fuel
fraction greater than 66%, resulting in a very small structural weight fraction. Therefore, the combination
of high aerodynamic efficiency and low structural weight fraction results in inherently very flexible vehicles.
The HALE vehicle may then present large dynamic wing deformations at low frequencies, presenting a direct
impact into the flight dynamic characteristics of the vehicle.

In the process of developing and subsequently integrating the resulting set of nonlinear second- and first-
order differential equations, 3 an adaptation of the Generalized-a Method4', was developed by the authors.
The resulting set of second-order nonlinear elastic equations of motion (EOM) and the first-order body
EOM are coupled with Peters6'7 finite state inflow model. The resulting set of second- and first-order
differential equations are then integrated using a modified implicit Generalized-a Method. The Generalized-
a Method is a time marching high-frequency dissipative integration scheme developed for linear systems.
When integrating structural dynamical problems, frequently the need arises for a dissipative method to
prevent high frequency numerical errors from accumulating and affecting the low frequency dynamics of
interest.

The high-frequency errors are due to the integration of a set of stiff set of equations.8',9 Stiff systems are
defined as one with a large condition number (ratio of the largest singular value divided by the smallest)
or a system with a very wide spread of time constants.'0 The resulting set of differential equations 3 are
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inherently stiff. Additionally the equations can be augmented with constraint algebraic equations to impose
relative or absolute motion constraints.

A. Previous Work

Several authors have expanded the field of structural dynamics time marching integration schemes. New-
mark'1 was one of the earliest researchers who saw the need for dissipative numerical integration schemes for
structural dynamics. That work was followed, among others, by Hilber, Hughes, and Taylor' 2 (HHT) who
extended the Newmark method. Several other authors contributed to the body of knowledge are summarized
by Fung's review of time marching algorithms using numerical dissipation. 13

Several of the time marching dissipative methods were then brought together in a single second order
formulation by Chung and Hulbert.' This formulation incorporates the Newmark, HHT, Wilson-0, and
trapezodial methods. Seeing the need for a first-order high-frequency dissipative method, Jansen, Whit-
ing, and Hulbert5 extended the second-order method to a first-order one originally for the. integration of
computational fluid dynamics equations. Supporting the use of numerically dissipative integration schemes,
Cardona and Geradin8 proved the importance of using these schemes for the integration of constrained EOM
with finite rotations.

Alternate methods of dealing with numerical instability associated with stiff system of equations have
been developed by several researchers. 9,'14-17 These researchers have developed various momentum and
energy preserving schemes as well as momentum preserving and energy decaying schemes. These methods
typically have slightly better convergence properties than the Generalized-a Method. All the methods have
been shown to work well with conservative or state independent generalized forces. Zhou and Tammai8 have
developed a more general single step integration scheme for linear structural dynamics problems incorporating
numerical dissipation. Kane and Levison19,20 and Sochet 2' extended the integration schemes by developing
various checking functions used to post process a numerical integration and determine its error.

Panda 22 presented the highlights of a Newton-Raphson sub-iteration technique which utilized the parent
Newmark-/3 time integration scheme for second-order EOMdeveloped for flexible rotorcraft problems. The
main difference between Panda's 22 formulation and the method presented here is the incorporation of first-
order differential equations. Additional differences with respect to his paper are the use of the Generalized-a
time marching integration scheme, a generic beam model formulation, detailed implementation schemes, and
comparative results.

Researchers studying nonlinear aeroelastic effects have used a variety of techniques. Patil and Hodges 2005
IFASD, utilized a second-order, central-difference, time marching algorithm with high frequency damping,
page 14. Drela 23 uses a second order backward difference method, with a sub-iteration step in his ASWING
code. Tang and Dowel124, 25 used a reduced order model and a Runge-Kutta integration scheme. Patil, et.
al. 26, 27 utilized a time-marching scheme based upon space-time finite elements. Brown2

' and Cesnik and
Brown 29 utilized a trapezoidal integration scheme for flexible and limited rigid body motions. These various
methods have shown difficulty in integrating the EOM developed by Shearer and Cesnik3 either through
numerical instability or severely increased computational burden.

The Generalized-a Method was selected based upon its relative ease of implementation with the current
EOM modeling and the availability of both first- and second-order formulations.', 5 The two methods are
modified using an implicit integration scheme detailed by Geradin and Rixen3 ° for nonlinear second-order
EOM. The second-order Generalized-a Method is used to integrate the flexible EOM, while the first-order
method is used to integrate the body EOM and remaining differential equations developed by Shearer and
Cesnik.3 The use of second- and first-order integration schemes keep the size of the resulting sub-iteration
tangent matrices significantly smaller than if the second-order equations were transformed to a set of first-
order differential equations.

B. Objective of the paper

The objective of this paper is to present an implicit time marching numerical integration method for use with
coupled first- and second-order nonlinear differential equations of motion, termed the Modified Generalized-a
Method. The proposed method addresses long term integration stability and computational performance for
a large nonlinear elastic system.
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III. Theoretical Development

The theoretical development is comprised of four sub-sections. The first section is a review of the
Generalized-a Method for first- and second-order linear systems. The second section presents a summary of
the particular first- and second-order EOM to be solved. The third section reviews and extends Geradin and
Rixen's 30 method for nonlinear systems using a dissipative time marching integration scheme and provides
the details for the very flexible aircraft EOM. The final section presents the details of the convergence criteria
required for each time step.

A. Review of the Generalized-a Method

The Generalized-a Method 4 is designed to solve the second order linear differential equation of the form

Ma + Cv + Kd = F (1)

where M, C, and K are generalized mass, damping and stiffness matrices, a, v, and d are generalized
acceleration, velocity, and displacement, and F is the generalized force vector. The Generalized-a Method
then solves for the a discrete time step, n, using

d,+, = d, +hv+ h2 (( 102) an + 02an.+) (2)

v.+, = v± + h ((1 - 72 ) a, +-y2an+1) (3)

F (tn+l-aj) = Ma,+l-,.. 2 + Cvn+1-,f 2 + Kdn+l-o`2 (4)

where h is the time step defined by
h = nl-t, (5)

and

dn+l-•f, = (1-af 2)dn+l+af2 dn (6)

Vn+l-f 2  = (1 - af 2 ) vn + oaf 2 vn (7)

an+l-am2  = (1 - am 2 ) an+ + am 2 an (8)

tn+1-of2 = (1-af 2 )tn+ ±+af2 tnl (9)

The parameters apf, am2 , 'Y2, and 02 are used to control the amplification of high frequency numerical modes
which are not of interest. If the parameters are chosen correctly, HHT, Newmark or WBZ methods can be
recovered. However, for this study the following relationships are used

72 = 1-a2 +af, (10)

12 = 1 - 2 + a±f:)2 (11)

am2  = 2 Pm 2 - 1 (12)
P2 +1

af 2  = P002 (13)
P- 2 +1

where the subscript 2 refers to the second-order system, Eq. 1, and will be necessary to distinguish -/2,

am2 , and af 2 values from the first-order EOM counterpart. The single parameter P,2 is used to control
the numerical dissipation above the normalized frequency h/T, where T is the period associated with the
highest frequency of interest and

0 < Pý. !_ 1 (14)

If pc, is chosen to be unity then the trapezoidal method is recovered. If pm is chosen to be 0 then frequencies
above h/T will be dissipated in one time step, a so called "asymptotic annihilation."

In a similar manner Jansen, Whiting and Hulbert5 developed the first-order Generalized-a Method for a
first-order system of the form

= ax (15)
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where the following relationships are employed

=n+a-, = aXn+Of, (16)

xn+l = xn, + hn + h-1 (.n-d1+ - Xn) (17)

&n+n. d = &n ± a, (n+l -& n) (18)

Xn+af, = xn + aAf (Xn+ -Xn) (19)
In a similar manner to the second-order Generalized-a Method the free parameters "Y1, am1 , and af1 can be

chosen in terms of a single high frequency spectral radius parameter, p.,, by

1
"Y1 = 1+am, -af (20)

1 3 (21)m1 2 \1 + po

1
af1  + (22)

B. Differential Equations for a Very Flexible Aircraft

The nonlinear equations of motion for a very flexible aircraft have been presented in Shearer and Cesnik. 3

An orthogonal reference frame B is placed at point 0, which in general is not the center of mass of the
vehicle, as shown in Figure 1. The resulting set of differential equations can be summarized as

MFFF = -MFB/i - CFF - CFB/
3 

- KFFE + RF (23)

MBB/3  
= -MBFF- CBB/3 

- CBFý + RB (24)
1

Q (25)

PB = [cGB o0 (26)

S= F,{{±F 2 {4± FaA (27)

where Eq. 2.3 is the governing nonlinear structural second order EOM, Eq. 24 is the B reference frame first
order nonlinear EOM, Eq. 25 is the propagation of the orientation of the B reference frame using quaternion
parameters,10 Eqs. 26 and 27 represents the unsteady aerodynamic effects through induced inflow over the
lifting surfaces. The variables are defined as

E -strain vector

3 -vector of translational and rotational velocities

C quaternion parameters for B reference frame orientation

PB vector components of B reference frame location

A unsteady inflow velocities

Three possible solutions to Eqs. 23-27 are given in Shearer and Cesnik.3 First, by reducing the order of
the equations by eliminating all elastic DOF, a simple rigid body solution emerged. Second is a linearized
solution, where the generalized mass matrix is only a function of the initial state. Third is a full nonlinear
simulation where the generalized mass matrix is updated at each time step. The matrices of Eqs. 23-27 are
functions of the states, E, /, C, A as

MFF,MFB,MBF,MBB = f(E)

CFF,CBF = f(c, )

CFB,CBB =

Q( = f(W) (28)
CGB = f(C)
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'B

Figure 1. Basic Body Reference Frame and Vehicle Coordinates

C. Implicit Integration Scheme Utilizing Generalized-a Method

The Generalized-a Method was designed for linear systems but is implemented here in solving a non-linear
problem. In general all numerical integration schemes follow the flow given in Figure 2. The differences
between integration schemes are imbedded in the "Subiteration Routine" block. For a trapezodial method,
this block consists of the amplification matrix, A, which solves

x.+z = [A] x. (29)

where n is a discrete time step and x are the system states. In the modified Generalized-a Method the
basic concept at each time step is to predict the states and their time derivatives and employ a sub-iteration
Newton-Raphson method to correct the state predictions. The sub-iteration is repeated until a user defined
tolerance is met. The implicit integration scheme chosen resembles Geradin's and Rixen's method3" and the
flow is shown in Figure 3. The specific convergence flow is shown in Figure 4.

1. Predictors

To begin the sub-iteration loop, Figure 3, the states at time step n + 1 are predicted. For the second order
EOM, Geradin and Rixen30 provide a set of predictors q*+l, q+, and n*+1 given the states at the current
time step, n, qn, 4,,, and 4n as

qn+l = qn+h4n±(1- f 2 )h2 n (30)

(31q*+1 = 4n +(1 - -2) hd, (31)

441 = 0 (32)

In a similar manner to Geradin and Rixen,30 the first order EOM predictors, x*+1 and &*+1 are proposed
as

Xn+l = xn+h(1- 7 1)±,. (33)

441 = 0 (34)
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Intialize
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Figure 2. Basic Numerical Integration Flow
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Figure 4. Sub-iteration Convergence Flow

2. Newton-Raphson: Residual Terms and the Tangent Matrix

The predictors of Eqs. :30-31 are substituted back into the governing differential equations, Eqs 23-27, where
all the terms are moved to the left side. The result is a set of residual terms, r, defined as

rf = MFFF+MFBI-+CFF +CFB-
3

+KFF--RF (35)

Tb = MBB/ + MBFF + CBB/ + CBFý - RB (36)

rq = ±+5f (37)

rp= 5B -[ CGB 01]/3 (38)

ri = F- { }-F 2{ } F3) (39)

where

r rf rb rq rp ri (40)

Taylor series expansion of the residual vector, ri+l, at time step n + 1 and sub-iteration step k ± 1 yields

rn+ n+l + i ± + ,+ (q.+1 -qn 1 ) +H.Q.T. (41)

and

q=[B \3 T T] (42)

Setting the higher order terms to zero, assuming rn+1 = 0, and defining the tangent matrix Sn+l

S k - kOqk rn+1 (43)
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where
Aqk k---ýn+ - qn+1  (44)

Aqk is solved as
Aqk - [S+l 1]- 1 rn+1  (45)

Here Aqk can be the correction term for either a first or second order differential equation depending upon
the structure of the tangent matrix. For the governing differential equations, Eqs. 23-27, the full tangent
matrix takes the form

o fk+, (r0ký [ 0 0,fk, a 0 k ~+

--a- (rb k rb kl 0 k+, )k, kk,

The tangent matrix Sn+1  given by Eq. ( in practice tends to have a large condition number due to

the stiffness of the governing differential equations. This creates a problem with numerical accuracy when
inverting Sk~1 . In order to reduce the condition number and improve numerical accuracy, the tangent matrix
is scaled with the scalar quantities dj according to

) k k• d] (47)
n+lij -a n

The scalar values, dj, are found so to minimize the condition number of Skl Equation 415 is then modified

as

n r+1(48)

3. Correction Terms

For second order differential equations the states and their derivatives are updated as3°
qk+ a

q+! qk~1 + q

-O7 = q+l (+ Aqk (49)

n~ q~ + .1\Aqk

For the first order differential, equations the updated states and the first derivative terms are found to be

nl=qn~l +±Aqk

nk+l : & ±nl Aqk (50)
This is derived starting with the update equation of qnie, Ref. 5, Eq. 13

qn+i = qn + h~0 + h= 1 (q+l -- an) (51)
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where the following substitutions were made

q =y, h = At, yi = -y (52)

Equation 51 can be solved for 4n+1 as

h,±+ = (qn+1 - (q. + h (1 - "/1) 4n)) (53)

Substituting Eq. 33 into Eq. 53

q : h (q.+1 - qn+l) (54)

and defining
Aq = qn+1 - q*+l (55)

Eq. 50 is recovered. Using Eqs. 49 and 50 the partial derivatives of the states and their derivatives with
respect to Aq can now be computed. For second order differential equations the derivatives are

q = 02h2

[~1 = A(56)a q 0 2h

q] =

(57)

and for first order

1 (58)

q] 1 (59)

Using Eqs. 23, 416, 56 and 58 the first row of the tangent matrix is given as

[(2MF±(hiCFF±+KFF] T

[ )MFB + CFB -[,RF]]

(S'+l)First Row = RF (60)

0

0

where the matrices MFF, CFF, MFB, and CFB are assumed to be constant for the derivation of the tangent
matrix.

D. Convergence Criteria

Figure I presents the high level flow of the convergence routine. The Newton-Raphson method outlined
above works well for the majority of time steps and sub-iteration steps. However, given the large number
of states that are being solved, the Newton-Raphson on occasion will not yield a lower norm of the residual
vector. If that happens the state correction, Aq is modified using a line search algorithm, such that

k+J -1,k(1

Aq = (--[Sn~] rn+l) (61)
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Crude bracket values for the scaling parameter a are first found by calculating the residual vector at various
values of a such that

0 < al <a < au< 1 (62)

The lower and upper bounds (subscripts 1 and u) on a are then used in a quadratic curve formula?

1 ((a' - a_2) iirI + (a. - a') 11rm.l + (a2 -- 2 ) Irul
"2 (am - a--) -ri-l + (a. - at) lirmll + (al - am) lrul . (63)

where
am = (64)

2
and rm is evaluated at am. Equation 63 is iterated upon until a satisfactory convergence on a is reached.
The change in the, Aq is then updated in accordance with Eqs. 49, 550, and 61. In almost all cases this line
search method provides an excellent update state, Aq.

It is possible however for the Newton-Raphson method to converge to a local minimum of IlrJ12. In this
case, the line search scaling parameter, a will be zero. This situation is determined by monitoring the value
of a for several sub-iteration steps. If a < - for more than a user defined number of sequential sub-iteration
steps, than a is arbitrarily set to

a = 0.25 + 0.25ki (65)

where ki is the number of times a local minimum has been reached and 6 is a user defined and • 0. The
state update, Aq is then computed using Eq. 61. Using this heuristic approach, the Newton-Raphson search
is moved away from a local minimum and allowed to continue searching for the global minimum of 11r112. In
practice this method has shown excellent results at resolving convergence to local minimums.

IV. Numerical Examples

Two different models are presented here to highlight the main characteristics of the proposed method.
The first model is a simple cantilevered beam shown in Figure 5 with properties given in Table 1.

Z

L -

Figure 5. Cantilevered Beam

Three integration techniques were run on the beam model: Matlab's ODE15S, Trapezoidal Method,
Modified Generalized-a Method . For the beam model Eq. 23 is solved where the B reference frame states,
0, are removed. Linear and nonlinear solutions are presented by either setting Mff and Cff to' the initial
state or being updated at each time step. A plot of the linear solution with the three integration methods
is shown in Figure 6 and a table of the relevant features is presented in Table 2. All three methods are
seen to provide similar results. The trapezoidal method and Generalized-a Method both provide a relatively
quick solution to the differential equations, while Matlab's ODE15S takes almost 2 orders of magnitude
longer due to the stiffness of the equations. For the nonlinear case, Figure 7, Matlab's ODE15S is seen to
diverge from the other solutions. This is due to the inability of the Matlab's solvers to handle high accuracy
stiff ODEs. Tighter tolerances did move Matlab's ODE15S solution slightly closer to the trapezoidal and
Modified Generalized-a Method solutions, but at the risk of early termination or increased integration time
of several orders of magnitude. Matlab's other solvers performed in a similar manner. This is not surprising
as Matlab's ODE solvers are intended for non-stiff, lower order ODEs. Table 3 provides a comparison of
computation time for the various integration methods and cases.
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Cantilevered Beam Properties

Property Value Units
Beam Length 1.0 m
Kil = EA 106 N

K 2 2 = GJ 50 N. m 2

K 33 = EI 2  50 N. m 2

K 44 = EI3  103 N. m 2

Mass per unit length 0.2 kg m-1

I,, per unit length 10-4 kg m
122 per unit length 10-6 kg • m

/33 per unit length 10-4 kg • m

Elements in beam 10 -

Number of Second-Order states 40 -

Table 1. Geometric, Stiffness, and Inertia Properties of Cantilevered Beam (only non-zero terms are listed)

0.5

0.4

E 0.3

S0.2
E

_ 0.1

"5 0
0.

S-0.1
--- Modified Gen Alpha

-0.2 - Trapezodial
. Matlab ODE45

0 0.05 0.1 0.15 0.2
time, s

Figure 6. Linear Elastic Solution of Cantilevered Beam with Tip Force Actuation of 10sin(20t)

Linear Elastic Solution of Cantilevered Beam, Numerical Results

Integration Scheme CPU Time Maximum Difference Convergence Parameters

MatlabODE15S 1746.80 s 0 Relative 10-3, Absolute = 10'

Trapezoidal 23.64 s 0.0064 NA
Generalized-a Method 28.47 s 0.0124 11'r12 = 5 * 10-' p_ 0.99

Table 2. Comparative Results of Various Integration Schemes for a Cantilevered Beam
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0.5

0.4

E 0.3

D 0.2-

0 .1-
C0

0

- Modified Gen Alph-a

-0.2 - Trapezodial
Matlab ODE45

0 0.05 0.1 0.15 0.2time, s

Figure 7. Nonlinear Elastic Solution of Cantilevered Beam with Tip Force Actuation of 10sin(20t)

Computational Times for Cantilevered Beam
Integration Scheme Linear Solution Nonlinear Solution

MatlabODE15S 1746.812s 9946.000s
Trapezoidal 23.641s 38.781s
Modified Generalized-a Method 28.469s 80.032s

Table 3. Computational Times for Trapezoidal and Modified Generalized-c Method Integration Schemes for
Very Flexible Aircraft
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For the next result, the cantilevered beam is pinned at the 50% location as seen in Figure 8. In this case

z

L

1'• -- x

Figure 8. Cantilevered Beam Constrained at Mid Point

the elastic equations of motion, Eq. 23, have been modified by Su and Cesnik 3' and the authors through
the stiffness matrix to include algebraic constraint equations with Lagrange Multipliers, AL. The augmented
system given in Eq. 23 without the B reference frame linear and angular velocities, O,becomes

MFF 0 { = CFF 0 i KFF IT e + E RF
0 0 ) +1 0 0 ('D 0 ,AL 4i+ A - o

(66)
where 4, contains the constraint relation, AL is the Lagrange multiplier, i is a time index, and hi and h0
are the displacement information at the current time step i and the initial time step 0. For this case Matlab
does not have a solver which can handle differential algebraic equations (DAEs) higher than index 1. Recall
the index of a DAE is defined as the number of times which the algebraic equation must be differentiated
before a standard ODE form is reached. For the current case the constraint equation (before expressing it
in discrete form) is of the form

f(E) A 0 (67)

Differentiating f(c) two times yields

0 = (68)

0 T- = c (69)

such that the later is in ODE form. The results for this case with a linear solution are seen in Figure 9.
While the trapezoidal case appears to be stable for the linearized solution, a closer examination of some of
the discrete eigenvalues of the amplification matrix, Table 4, reveal a slight instability (greater than unity
or repeated eigenvalues on the unit circle). The eigenvalues with only real parts and associated eigenvectors
are due to the Lagrange multipliers. By examining the unstable elastic eigenvalues it is found that they are
also controlled by the Lagrange multipliers. The slight instability is not seen over relatively short periods
of integration. This is consistent with the proof of Cardona and Geradin.s For the nonlinear solution,
Figure 10, it is seen that the trapezoidal method is unstable. This can also be seen from the residual term as
shown in Figure 1. 1. Also from Figure 10, the Generalized-a Method maintains long term stability. However
due to the high frequency numerical damping of the Modified Generalized-ca Method, there is a loss of high
frequency content. Solution time is also longer for the Modified Generalized-a Method , Table 5, due to the
recursive nature of the sub-iteration scheme until a satisfactory residual term is obtained. The user must
trade long term stability with the loss of high frequency content.

For very flexible aircraft repeated eigenvalues on the unit circle can come from the aircraft configuration
(joined wing concept),' unconstrained rigid body degrees of freedom due to a free flying aircraft, or an aircraft
controller. A model based upon Ref. 3 is shown in Figure 1 and relevant physical properties are summarized
in Table 6. Here results are presented for a nonlinear flexible simulation where the aircraft is given a square
aileron input, Figure 12. Representative solutions of the longitudinal and vertical B reference frame velocities
are shown in Figure 13 and pitch and yaw rates in Figure 14 for a trapezoidal and Generalized-a Method
integration. While the two methods track resonably well for the first 10 seconds and then the trapezoidal
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Figure 9. Linear Elastic Solution of Pinned Cantilevered Beam with Tip Force Actuation of 10sin(20t)

Eigenvalues due to Lagrange Multiplier Constraints
Eigenvalue Real Part Imaginary Part State

A75  -0.999992847 0 Lagrange Multiplier

A78  -0.999996417 0 Lagrange Multiplier

A81  -0.999999461 0 Lagrange Multiplier
A7 6 ,7 7  -1.000003576 ±1- 0.000006194i Strain
A79,80  -1.000001791 ±/- 0.000003103i Strain

A82 ,8 3  -1.000000269 ±/- 0.000000467i Strain

Table 4. Comparative Results of Various Integration Schemes for a Cantilevered Beam
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Figure 10. Nonlinear Elastic Solution of Pinned Cantilevered Beam with Tip Force Actuation of 10sin(20t)
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Figure 11. Residual Term, 11r112, of Pinned Cantilevered Beam with Tip Force Actuation of 10sin(20t)

Computational Times for Cantilevered Beam
Integration Scheme Linear Solution Nonlinear Solution
Trapezoidal 73.875s 110.531s
Modified Generalized-a Method 75.156s 258.375s

Table 5. Computational Times for Trapezoidal and Modified Generalized-a Method Integration Schemes for
Very Flexible Aircraft
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Figure 12. Open Loop Aileron and Rudder Commands
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Model Parameters

Property Value Units

Light Heavy
Fuselage Length 26.4 m
Wing Span 58.6 m

Wing Area 196.3 m2

Root Chord 4.5 m

Tip Chord 2.2 m

Aspect Ratio 17.5 -

Horizontal Tail Span 18.0 m

Horizontal Root Chord 3.5 m

Horizontal Tip Chord 2.45 m

Vertical Tail Span 4.0 m
Vertical Root Chord 2.45 m

Vertical Tip Chord 2.0 m

Wing/Horizontal Tail Airfoil NACA 4415

Vertical Tail Airfoil NACA 0012 -

Aileron Location 16.3 to 22.8 m

Aileron, Elevator, Rudder Chord 0.2Clocal

Elevator Location 1.8 to 9.0 m

Rudder Location 0.8 to 3.2 m
Aircraft Angle of Attack 0.640 6.370 -

Elevator Deflection Angle -4.110 -13.430

Fuel Mass 0 32,000 kg

Total Mass 1.52. 104 4.72. 104 kg

Fuel Fraction 0.0 67.8 %

X 9.61-105 1.17.106 kg m2

1, 8.21. 105 2.94. 106 kg • m2

Z 1.75.106 3.93.106 kg • m

l _S. 0 0 kg • m 2

Iz 0 0 kg•m2

I. -1.65. 104 -4.72. 104 kg • m2

Elements per wing 9

Elements per horizontal tail 5 -

Elements per vertical tail 5

Elements in fuselage 10

Total Number of Elements 48
*Note: I'- are the inertia properties in a steady state configuration

Table 6. Geometric and Inertia Properties of the Flexible Aircraft Model
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Figure 13. B Reference Frame Velocities for Trapezoidal and Generalized-a Method Integration
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Figure 14. B Reference Frame Velocities for Tlrapezoidal and Generalized-a Method Integration
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method begins to diverge. The divergence can be better seen by examining the two norm of the residual
shown in Figure 15, while the Modified Generalized-a Method was commanded to keep the norm below
1.0 (figure not shown). The penalty paid for this long term stability is in computational time as shown in

108

107
N 10

W

CL

S6

Z5

5150 15 20

time, s

Figure 15. Residual Term, IUrl12 , of Trapezoidal Integration

Table 7.

Computational Times

Trapezoidal 3902.8 s

Modified Generalized-a Method 42261.2 s

Table 7. Computational Times for Trapezoidal and Modified Generalized-a Method Integration Schemes for
Very Flexible Aircraft

V. Conclusion

The proposed integration method, i.e., the Modified Generalized-a Method, shows good correlation with
existing integration schemes for systems which are stiff and have a large number of states. Its main limiting
factors are an increase in computational time over simpler first order methods and the attenuation of high
frequency data due to the dissipative nature of the integration scheme. It was also shown that the method
handles DAE of index higher than 1 and preserves long term stability when solving nonlinear elastic EOM.
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